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Over the past decades, atoll islands exhibited no widespread sign of physical desta-
bilization in the face of sea-level rise. A reanalysis of available data, which cover
30 Pacific and Indian Ocean atolls including 709 islands, reveals that no atoll lost
land area and that 88.6% of islands were either stable or increased in area, while
only 11.4% contracted. Atoll islands affected by rapid sea-level rise did not show a
distinct behavior compared to islands on other atolls. Island behavior correlated
with island size, and no island larger than 10 ha decreased in size. This threshold
could be used to define the minimum island size required for human occupancy
and to assess atoll countries and territories' vulnerability to climate change. Beyond
emphasizing the major role of climate drivers in causing substantial changes in the
configuration of islands, this reanalysis of available data indicates that these drivers
explain subregional variations in atoll behavior and within-atoll variations in island
and shoreline (lagoon vs. ocean) behavior, following atoll-specific patterns.
Increasing human disturbances, especially land reclamation and human structure
construction, operated on atoll-to-shoreline spatial scales, explaining marked
within-atoll variations in island and shoreline behavior. Collectively, these findings
highlight the heterogeneity of atoll situations. Further research needs include
addressing geographical gaps (Indian Ocean, Caribbean, north-western Pacific
atolls), using standardized protocols to allow comparative analyses of island and
shoreline behavior across ocean regions, investigating the role of ecological
drivers, and promoting interdisciplinary approaches. Such efforts would assist in
anticipating potential future changes in the contributions and interactions of key
drivers.
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1 | INTRODUCTION

Atolls are ring-shaped reefs occurring in mid-ocean, which generally form linear chains (Woodroffe & Biribo, 2011). The atoll
rim encloses a central lagoon and supports reef islands composed of unconsolidated or poorly lithified carbonate sand and
gravel deposited on the reef platform by waves and currents (McLean, 2011). Since the late 1990s-early 2000s, the extent to
which these low-lying (generally <5 m) islands are susceptible to be physically destabilized by climate change has become a
major global concern, as their destabilization would eventually cause the disappearance of entire nations (e.g., the Maldives,
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Tuvalu, and Kiribati), due to reef islands constituting the only habitable area in these countries (Barnet & Adger, 2003; Con-
nell, 2003; Dickinson, 2009; McAdam, 2010; Nurse et al., 2014). Climate-ocean related changes, including sea-level rise,
increasing wave energy, change in tropical cyclone frequency or intensity, and ocean warming and acidification, are consid-
ered as major threats to these islands' persistence, as the surrounding reef ecosystem may lose the capacity to fulfill its major
functions, that is, provide sediments to islands and buffer storm waves (Albert et al., 2016; Becker et al., 2012; Chand, Tory,
Ye, & Walsh, 2016; Church et al., 2013; Ferrario et al., 2014; Gattuso et al., 2015; Hughes et al., 2017; Mentaschi, Vousdou-
kas, Voukouvalas, Dosio, & Feyen, 2017; Perry & Morgan, 2017; Shope, Storlazzi, & Hoeke, 2017; Van Woesik, Golbuu, &
Roff, 2015). Furthermore, recent modeling studies highlighted that future increased wave activity under sea-level rise may
increase the frequency and extent of marine inundation on these islands in the event that coral reefs would not keep up with
sea-level rise. This would cause increased soil and freshwater lens salinization, which would in turn affect water and food sup-
ply, thereby posing a threat to island habitability (Beetham, Kench, & Popinet, 2017; Gingerich, Voss, & Johnson, 2017;
Shope, Storlazzi, Erikson, & Hegermiller, 2016; Storlazzi, Elias, & Berkowitz, 2015; Vitousek et al., 2017; Werner, Sharp,
Galvis, Post, & Sinclair, 2017).

Since 2010 (Webb & Kench, 2010), a growing number of studies have assessed recent past-to-present (from the end of the
19th century to the 1990s–2010s) island planform changes to determine if atoll islands were contracting as a result of acceler-
ating sea-level rise. McLean and Kench (2015) completed the first review on atoll island planform change, based on a
244-island sample from 12 Central and Western Pacific atolls distributed among six atoll countries and territories, that is,
Tuvalu, Kiribati, the Federated States of Micronesia, the Marshall Islands, French Polynesia and Papua New Guinea. Using
available quantitative data for 146 islands, they showed that despite the high rate of sea-level rise observed in this area of the
Pacific (up to 5.1 mm/yr in Tuvalu over the 1950–2009 period), all of the sample islands had persisted, with, respectively,
72.6%, 19.2%, and 8.2% of islands exhibiting areal stability, expansion, and contraction. They concluded that climate-ocean
variability, sediment production, and human activities were the major controls on island change, and stressed that the mainte-
nance of an adequate sediment supply, of unobstructed sediment transport pathways and of sufficient accommodation space at
the coast were the conditions required for island persistence over the 21st century. In line with these findings, they emphasized
the major importance of considering in-country resettlement (vs. external migration) as a major adaptation strategy for atoll
countries and territories.

Since this first review, new studies were carried out in the Pacific and Indian Oceans, which increased the documented
sample to 35 atolls and 852 islands (666 and 186 in the Pacific and Indian Oceans, respectively). This extended atoll island
dataset offers the opportunity to provide an updated review on atoll island multidecadal to centennial planform change, and to
address three key questions: (1) Does atoll island behavior show regional or subregional variations in accordance with the rate
of sea-level rise? (2) What is generic (i.e., global) and what is specific (i.e., regional to local) in recent atoll island and shore-
line change? (3) What are the respective contributions of climatic, ecological and anthropogenic drivers to regional-to-local
variations in island areal change?

Beyond addressing these questions, this article discusses future research needs and the implications of this review's
insights for adaptation policies in atoll countries and territories.

2 | RECENT ATOLL ISLAND AND SHORELINE CHANGE

2.1 | Building an Atoll Island database

This article relies on the reanalysis of available data on recent past-to-present atoll island planform changes (Table 1), based
on the elaboration of an Atoll Island Database (see Table S1, Supporting Information). First, we selected, in a comparative
perspective, the papers based on multidate image analysis using standard shoreline change indicators, such as the base of the
beach, and the vegetation or stability line (Duvat & Pillet, 2017; Ford, 2012; Webb & Kench, 2010). Second, we extracted
from these papers (a) the metadata of documented islands, that is, country or territory in question, atoll name and geographic
coordinates, island reference (name or number), timespan and duration of the period of analysis, current island size, and shore-
line proxy used; (b) quantitative data, namely the net and decadal rates of change in aggregated atoll-wide and island land
area, these two indicators being the only common ones between studies. In line with recent studies (Duvat & Pillet, 2017;
Duvat, Salvat, & Salmon, 2017; McLean & Kench, 2015), we used the �3% threshold to interpret atoll and island areal
change, considering that change less than 3% (−3% < x < +3%) was not significant, while change ≥3% and ≤ −3% corre-
sponded to an increase and decrease in land area, respectively. Within the limits of the data provided by the selected papers,
we enriched the database with data on changes in shoreline and island position, and in island planform configuration (aggrega-
tion vs. break up, formation vs. disappearance, rotation). Lastly, we extracted from the reviewed papers and reported in the
database the factors to which observed changes were attributed. These factors were classified into three categories (a):
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TABLE 1 Current knowledge on multi-decadal island and shoreline change on atolls

Country or
territory

Atoll or island
(for patch reefs)

No. of
islands Timeframe considered Shoreline

proxy used Authors
Period No. of years

Pacific Ocean

Tuvalu Funafuti 8�S 179�E 26 1896/1998–2013 115–117 VL Kench, Thompson, Ford, Ogawa,
and McLean (2015)

Nanumaga 6�S 176�E 7 1971–2014 43 VL Kench, Ford, and Owen (2018)

Niulakita 10�S 179�E 1 1971–2014 43 VL Kench et al. (2018)

Niutao 6�S 177�E 1 1971–2014 43 VL Kench et al. (2018)

Nui 7�S 177�E 13 1971–2014 43 VL Kench et al. (2018)

Nukufetau 7�S 178�E 26 1971–2014 43 VL Kench et al. (2018)

Nukulaelae 9�S 179�E 19 1971–2014 43 VL Kench et al. (2018)

Vaitupu 7�S 178�E 8 1971–2014 43 VL Kench et al. (2018)

Total 101 – – – –

Marshall Islands Majuro 7�N 171�E 15 1967–2004/2006 37–39 VL Ford (2012)

Wotje 9�N 170�E 49 1945–2010/2012 65–67 VL Ford (2013)

Ebon 7�N 168�E 19 WWII/1970–2010 40–65 VL Ford and Kench (2015)

Lae 8�N 166�E 15 WWII/1970–2010 40–65 VL Ford and Kench (2015)

Likiep 9�N 169�E 56 WWII/1970–2010 40–65 VL Ford and Kench (2015)

Rongerik 21�N 167�E 11 1970–2010 40 VL Ford and Kench (2015)

Ujae 9�N 165�E 9 WWII/1970–2010 40–65 VL Ford and Kench (2015)

Wotho 10�N 165�E 15 WWII/1970–2010 40–65 VL Ford and Kench (2015)

Palmyra 0�50N 162�W 30a 1874/1947–2000 53–126 HWM Collen, Garton, and Gardner
(2009)

Total 245 – – – –

Kiribati Tarawa 1�N 173�E 48 1968–1998 30 VL + BB Biribo and Woodroffe (2013)

Maiana 1�N 173�E 20a 1969–2009 40 BB Rankey (2011)

Aranuka 0�N 173�E 6 1969–2009 40 BB Rankey (2011)

Total 74 – – – –

Federated States
of Micronesia

Mokil 6�N 159�E 3 1944–2006 62 VL Webb and Kench (2010)

Pingelap 6�N 160�E 3 1944–2006 62 VL Webb and Kench (2010)

Total 6 – – – –

French Polynesia,
Tuamotu
Archipelago

Manihi 14�S 145�W 41 1961–2001 40 VL Yates, Le Cozannet, Garcin, Salai,
and Walker (2013)

Takapoto 14�S 145�W 49 1969–2013 44 SL + BB + CD Duvat and Pillet (2017)

Rangiroa 15�S 147�W 8 1969–2013 47 SL + BB Duvat, Salvat, and Salmon (2017)

Tikehau 14�S 148�W 14 1962/1981/1998–2014 16–52 SL + BB Duvat, Salvat, et al. (2017)

Mataiva 14�S 148�W 13 1976–2013 37 SL + BB Duvat, Salvat, et al. (2017)

Takaroa 14�S 145�W 76 1976–2013 44 SL + BB Duvat, Salvat, et al. (2017)

Total 201 – – – –

French Polynesia,
Society Islands

Manuae 16�S 154�W 6 1955–2008 53 VL Yates et al. (2013)

Tupai 16�S 151�W 5 1955–2001 46 VL Le Cozannet et al. (2013)

Tetiaroa 17�S 149�W 12 1955–2002 47 VL Le Cozannet et al. (2013)

Total 23 – – – –

Papua New
Guinea

Taku 4�S 157�E 16 1943–2012 69 VL + BB Mann and Westphal (2014)

Total Pacific Ocean 666 1896–2014 16–117 – –

Indian Ocean

Maldives Huvadhoo 0�N 73�E 184 1969–2004/2006 35–37 VL Aslam and Kench (2017)

Scattered Islands Glorieuses 11�S 47�E 1 1989–2003 14 VL + BB Testut et al. (2016)

Chagos Diego Garcia 7�S 72�E 1 1967–2005 38 VL Hamylton and East (2012)

1963–2013 50 BS-WS Purkis, Gardiner, Johnston, and
Sheppard (2016)

Total Indian Ocean 186 1963–2013 14–50 – –

(Continues)
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climate-ocean related drivers, including seasonal swell waves, climate variability (tropical cyclones, distant-source swells and
ENSO phases) and climate change impacts (especially sea-level rise); (b) ecological drivers, including the reef ecosystem, and
the native coastal and intertidal vegetation; and (c) anthropogenic drivers, that is, human-induced changes to atoll and island
configuration and to island dynamics.

The Atoll Island Database includes 35 atolls and 852 islands, providing quantitative data on recent (i.e., past decades to
century) change in land area for 30 atolls (29 in the Pacific and 1 in the Indian Ocean) and 709 islands, 533 of which are
located in the Pacific and 176 in the Indian Ocean (Figure 1, Table S1). The territories having the highest number of documen-
ted islands are the Marshall Islands (245 islands), French Polynesia (224), and the Maldives (184). Of note, in the study areas,
the average rate of sea-level rise over the past decades ranged from 2.0 � 0.6 (Pingelap, Mokil; Becker et al., 2012) to
5.1 � 0.7 (Funafuti; Becker et al., 2012) mm/yr (multiplier factor of 2.5), with most values falling between 2 and 3 mm/yr
(Figure 2).

2.2 | Change in atoll and in island land area

2.2.1 | A global trend: The persistence of atoll and island land area

Over the recent past, 29 atolls exhibited a stable land area, while one (South Tarawa, Kiribati) increased in size (Figure 2).
Collectively, these atolls comprise 709 islands, 518 of which were stable (representing 73.1% of islands), while 110 (15.5%)
increased and 81 (11.4%) decreased in size. In total, 88.6% of islands were either stable, or increased in size (Figure 3,
Table S1). These results show that atoll and island areal stability is a global trend, whatever the rate of sea-level rise. Tuvaluan
atolls affected by rapid sea-level rise (5.1 mm/yr; Becker et al., 2012) did not exhibit a distinct behavior compared to atolls
located in areas showing lower sea-level rise rates, for example, the Federated States of Micronesia or Tuamotu atolls
(Figure 2).

2.2.2 | Regional and subregional variability in atoll and atoll island behavior

Despite island areal stability was the general trend, the Maldivian islands appeared more affected by erosion than the Pacific
islands (Figure 2). Over the past decades, 70.5% of Huvadhoo islands (i.e., 124 islands) were stable, while 23.3% (41 islands)
decreased and 6.2% (11 islands) increased in size. Over the same period, 73.9% of Pacific islands (i.e., 394 islands) were sta-
ble in area, while 18.6% (99 islands) increased and 7.5% (40 islands) decreased in size. Although data on Indian Ocean islands
are still too limited to allow the detection of regional (Pacific vs. Indian Ocean) and subregional (e.g., Maldives vs. Chagos or
Seychelles atolls) variations, these results nonetheless indicate that island behavior is not uniform on these atolls.

The extended dataset available for the Marshall Islands (8 atolls) and for French Polynesia (9 atolls) revealed the absence
of homogenous atoll behavior within Pacific Ocean subregions. Within these two atoll groups, high between-atoll variability
was recorded over distances of tens to hundreds of kilometers (Figure 2). For example, in the Marshall Islands, while on
Majuro most islands (9/15) increased in size, the other atolls mainly showed island areal stability, with a variable proportion
of islands that were stable, increased or decreased in size. Likewise, in the northern and north-western Tuamotu Archipelago,
Manihi and Takaroa exhibited a high number of islands (15/41 and 13/68, respectively) that increased in area, while Takapoto
and Mataiva predominantly showed island areal stability (noted on 21/26 and 11/13 islands, respectively).

2.2.3 | Correlation between the rate of change and island size

Generally, island behavior correlates with island size (Figure 3). First, the smallest islands (<5 ha), which represent 52.90% of
islands (375/709), exhibited the highest variability in land area change, compared to larger islands. In the Pacific, 8 islands of
this category exhibited a decadal rate of change ≥20%. Likewise, in the Indian Ocean, on Huvadhoo, areal gains or losses
reaching up to �20% were only experienced by very small islands (<1 ha). The highest and lowest rates of change were
respectively of +125.5% for Lokejbar (3.3 ha) on Majuro and of −22.7% for a tiny island of Huvadhoo. In contrast, the

TABLE 1 (Continued)

Country or
territory

Atoll or island
(for patch reefs)

No. of
islands Timeframe considered Shoreline

proxy used Authors
Period No. of years

Pacific and Indian Oceans

Total All atolls/patch reefs 852 1896–2014 14–117 – –

Note. The third column indicates the number of documented islands, which does not necessarily correspond to the total number of islands of the atoll. BB: base of the
beach; BS-WS: brown soil-white sand limit; CD: inner limit of cyclonic deposits; HWM: high water mark; VL: vegetation line; SL: stability line; WWII: Second
World War.
a Indicates that the number of islands was extracted from DigitalGlobe images provided by Google Earth, as it was not indicated by the authors of the reviewed papers.
For atolls that were covered by several studies, only the most complete study is cited. See Table S1 for detailed results.
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334 islands larger than 5 ha, which represent 47.10% of the sample islands, showed less contrasting rates of change, that is,
ranging from −3% to +10%, except for one island (Anenlibw, Majuro, +19.3%). Second, the direction of change varied with
island size. All of the islands larger than 10 ha experienced either stability (209/234 islands, that is, 89.32%) or expansion
(25/234 islands, that is, 10.68%). In contrast, islands smaller than 10 ha underwent more contrasting behaviors, as 309 islands
out of 475, that is, 65.05%, experienced stability, while, respectively 81 (17.05%) and 85 islands (17.90%) showed contraction
and expansion. Importantly, none of the 234 islands larger than 10 ha and only 4 out of the 334 islands larger than 5 ha under-
went a reduction in size. The largest islands were the most stable. In the Pacific, where the 16 sample islands larger than
200 ha concentrate, 15 of these islands exhibited areal stability (1 on North Tarawa, 3 in the Marshall Islands, 7 in the
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Tuamotu, 4 in Tuvalu), with a decadal change in land area < 1%, while the last island (Bonriki, South Tarawa, 863.2 ha)
increased in size by 22.6%. Likewise, among the 27 islands having a land area lying between 100 and 200 ha (9 in French
Polynesia, 6 in the Marshall Islands, 6 in Kiribati, 5 in Tuvalu and 1 in the Federated States of Micronesia), only 3 increased
in area, while 24 were stable.

2.3 | Change in shoreline and island position

2.3.1 | Highly contrasting changes in lagoon and ocean shoreline position

Island shoreline behavior between and within atolls was so variable that no general conclusions can be drawn. In the Pacific,
on three atolls, including two Marshallese atolls (Majuro and Wotje) and Manihi (French Polynesia), islands exhibited marked
shoreline advance on both ocean and lagoon coasts (Ford, 2012; Ford, 2013; Yates et al., 2013). Over the same period, on four
other Marshallese atolls (Ebon, Lae, Wotho, Likiep), the ocean- and lagoon-facing shorelines of islands were predominantly
stable and secondarily experienced advance, while on the two remaining Marshallese atolls (Rongerik and Ujae), islands
exhibited widespread shoreline retreat (i.e., along 33% of shorelines; Ford & Kench, 2015). Likewise, in the Tuamotu atolls,
islands exhibited contrasting shoreline profiles. On Rangiroa and Tikehau, the ocean and lagoon shores of islands alternately
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level rise
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Republic of the Marshall Islands, 1 from the Maldives and 1 from Tuvalu). The amplitude and direction of change vary with island size. Importantly, none of
the islands larger than 10 ha underwent a reduction in size
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advanced and retreated over short distances (Figure 4), while on Takapoto, islands experienced contrasting lagoon shoreline
behavior and predominantly stable ocean shorelines (Duvat & Pillet, 2017; Duvat, Salvat, et al., 2017). High within-atoll vari-
ability between atoll sides and islands was similarly reported in the Society Islands and on Huvadhoo (Aslam & Kench, 2017;
Le Cozannet et al., 2013). Of note, where mangroves occur on the lagoon-side of islands (e.g., in Kiribati), they generally
expanded seaward, as on Maiana and North Tarawa (Ellison, Mosley, & Helman, 2017; Rankey, 2011). On Maiana, mangrove
extension along the shoreline led to a 5% increase in the length of mangrove shoreline. Collectively, these findings confirm
high subregional variability in atoll and island behavior.

2.3.2 | Predominance of island positional stability

The great majority of Pacific islands showed positional stability, as illustrated by the Tuamotu atolls, where 85–100% of
islands were stable, depending on atolls (Figure 5; Duvat & Pillet, 2017; Duvat, Salvat, et al., 2017). These rates are in agree-
ment with the situation in Funafuti, where for most islands at least 75% of the island footprint has persisted (Kench et al.,
2015). However, some islands have migrated over the reef platform, as a result of the differentiated behaviors of their lagoon
and ocean shorelines. While some atolls (Pingelap, Mokil, and Taku) showed unidirectional island lagoonward migration,
others exhibited opposed windward and leeward situations (Mann & Westphal, 2014; Webb & Kench, 2010). For example,
on Funafuti and Takaroa, windward and leeward islands, respectively migrated lagoonward and oceanward (Duvat, Salvat,
et al., 2017; Kench et al., 2015). Of note, the smallest islands of Huvadhoo generally exhibited marked positional change,
showing either cross-shore migration (either lagoonward, or oceanward), or migration along the reef edge (Aslam &
Kench, 2017).

2.4 | Major modes of change in island planform configuration

2.4.1 | Dynamic character of spits, island tips and beaches

Spits, island tips and beaches underwent marked and highly contrasting changes. The changes affecting sand and gravel spits
and island tips, which mainly consisted of marked extension or contraction, occurred at the multidecadal timescale. Sand and
gravel spits experienced either pronounced longitudinal or lateral extension, or marked contraction, as on Funafuti, Maiana
(up to +100 m), Pingelap, Takapoto and most Marshallese atolls, with sand spit extension being the predominant mode of
change there (Duvat & Pillet, 2017; Ford & Kench, 2015; Kench et al., 2015; Rankey, 2011; Webb & Kench, 2010). Island
tips showed either marked extension or contraction, or pronounced positional change, especially on elongate and on north–
south oriented islands (e.g., on Maiana, Aranuka, Mokil, and Huvadhoo), and in hoa-facing areas, for example, on North
Tarawa (Aslam & Kench, 2017; Biribo & Woodroffe, 2013; Rankey, 2011; Webb & Kench, 2010). Importantly, beaches
experienced substantial changes, not only at the multidecadal timescale, but also over shorter periods of time (i.e., in several
years). They underwent either contraction, or rotation (e.g., on Aranuka), with the former leading to beach disappearance on
some islands of Taku, Tikehau, and Rangiroa (Duvat, Salvat, et al., 2017; Mann & Westphal, 2014; Rankey, 2011).

2.4.2 | Island aggregation and break up, formation and disappearance, and rotation

The extension of spits and of island tips contributed to island aggregation, which occurred on equatorial and tropical atolls,
including Funafuti, Maiana, South Tarawa, Mokil, Rangiroa, Manihi, Palmyra, and most Marshallese atolls (Figure 4a). Island
aggregation occurred either as a result of continuous hoa infilling followed by embayment infilling (for example on Funafuti,
Maiana, South Tarawa, Mokil, and most Marshallese and Tuamotu atolls (Biribo & Woodroffe, 2013; Ford & Kench, 2015;
Kench et al., 2015; Rankey, 2011; Webb & Kench, 2010; Figure 5c)), or as a result of rapid lagoon sedimentation leading to
the inclusion of islets and sandbanks on larger islands, as on Palmyra and Diego Garcia (Collen et al., 2009; Purkis et al.,
2016). In contrast, island break up into several segments, generally caused by tropical cyclones, was rarely observed, as a lim-
ited number of atolls were affected by such events over the past decades. Island formation and disappearance (the latter only
affecting very small islets), which occurred at different timescales (from several years to several decades) only occurred on
Palmyra, Takaroa, Tikehau, and Nukufetau (Collen et al., 2009; Duvat, Salvat, et al., 2017; Kench et al., 2018; Figure 5a). It
is noteworthy that despite widespread island contraction occurring on Huvadhoo, where 23.30% of islands decreased in size,
no island disappearance was reported there (Aslam & Kench, 2017). Although rarely noted, island rotation in a constant direc-
tion, either clockwise or counter-clockwise, occurred on Pacific (e.g., Tepuka, Funafuti) and Indian (e.g., Grande Glorieuse,
French Scattered Islands) Ocean islands (Kench et al., 2015; Testut et al., 2016). For example, Grande Glorieuse underwent a
slight rotation in a counter-clockwise direction in only 14 years (1989–2003). On Huvadhoo, some shore parallel islands that
expanded over the past four decades also exhibited rotation, although this behavior was rarely noted (Aslam & Kench, 2017).
Collectively, these results demonstrate that although atoll islands were highly dynamic over the past decades to century, they
rarely underwent major changes in configuration.
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3 | ATTRIBUTION OF CHANGE

3.1 | Contribution of climate drivers to regional and subregional variability in atoll and island behavior

Most studies highlighted that although seasonal swell and climate variability were major drivers of recent atoll island planform
change, their impacts on islands and shorelines were highly variable (i.e., either accretional, or erosional), due to differences
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in atoll and island exposure to waves across ocean regions and atoll groups (Andrefouët, Ardhuin, Queffeulou, & Legendre,
2012). For example, the respective contributions of seasonal swell and tropical cyclones were found to vary significantly
between French Polynesian atolls. Le Cozannet et al. (2013) noted that changes were predominantly influenced by tropical
cyclones on Tupai, while they were mainly controlled by the combined effects of tropical cyclones and trade wind swell on
Tetiaroa. Additionally, Yates et al. (2013) and Le Cozannet et al. (2013) found that a given driver, for example, tropical
cyclones, had opposite effects on nearby atolls and islands. For example, while the northwest of Manihi exhibited cyclone-
induced ocean shoreline accretion resulting from increased sediment transport, the lagoon shore of eastern Manuae and the
south-eastern shores of Tupai showed marked cyclone-induced erosion. Likewise, the 1983 tropical cyclones mainly had ero-
sional impacts on the islands of Rangiroa, while they had alternating erosional and accretional effects along the shorelines of
Mataiva and Takapoto (Duvat & Pillet, 2017; Duvat, Salvat, et al., 2017). Moreover, major changes in island configuration,
such as island aggregation, were caused either by the combined action of tropical cyclones and trade wind swell
(e.g., Mataiva; Duvat, Salvat, et al., 2017), or by the predominant action of a given driver (e.g., trade wind swell in equatorial
regions). Likewise, spit and island tip extension were driven either by longshore sediment transport attributable to trade wind
swell (Collen et al., 2009; Kench et al., 2015; Rankey, 2011; Webb & Kench, 2010), or by massive cyclone-induced sediment
inputs (Duvat & Pillet, 2017). Current knowledge on the contribution of distant-source swell to island change confirms that
variations in atoll and island exposure to swell are of importance in explaining the high subregional and within-atoll variability
observed. While Andrefouët et al. (2012) highlighted the atoll “shadow effect” operating within the Tuamotu chain, Aslam
and Kench (2017) hypothesized that the high exposure of Huvadhoo's southern islands to distant-source swell may explain
their accretional patterns. However, distant-source swell can also have erosive impacts, as observed on the southern islets of
Tikehau following the July 1996 event (Figure 5b). Of note, the smallest islands were found to be the most unstable ones
(i.e., marked gain or loss in land area) in the face of climate-related pressures, especially tropical cyclones and distant-source
swell. This explains the reduction in size and disappearance of some of the smallest islands (e.g., Tikehau) over the past
decades. However, on Huvadhoo, the widespread contraction of islets, which was reported by Aslam and Kench (2017), may
be due to sea-level rise-induced sediment reworking. Lastly, the differential influence (e.g., higher in Kiribati compared to
French Polynesia) of ENSO across Pacific Ocean subregions likely contributed to variability in atoll and atoll group behavior
(Rankey, 2011).

3.2 | Anthropogenic contribution to between- and within-atoll variability

The contribution of human drivers to island planform change was first highlighted in the capital atolls of the Pacific
affected by rapid population growth (Duvat, 2013; Duvat, Magnan, et al., 2017; Duvat, Magnan, & Pouget, 2013;
Jones & Lea, 2007; Storey & Hunter, 2010; Yamano et al., 2007). Additionally, recent studies emphasized that human
activities also caused substantial island and shoreline changes in the settled and also in some unsettled but exploited
islands of rural atolls (Aslam & Kench, 2017; Duvat & Pillet, 2017; Duvat, Salvat, et al., 2017; Mann & West-
phal, 2014).

In highly modified atoll environments, for example, Palmyra, Majuro, South Tarawa, and some Tuamotu atolls, wide-
spread human-induced degradation of the reef ecosystem was reported, including the alteration of the natural sediment supply
by water pollution, and the physical destruction of sand banks, reef flats and shallow lagoon habitats by blasting, dredging
and land reclamation (Biribo & Woodroffe, 2013; Collen et al., 2009; Duvat, 2013; Duvat, Magnan, et al., 2017; Duvat, Sal-
vat, et al., 2017; Ford, 2012). This has had detrimental impacts on the capacity of the reef ecosystem to supply islands with
sediments and on the physical stability of islands (Duvat, Salvat, et al., 2017; McLean & Kench, 2015). In addition, land recla-
mation and causeway construction caused major changes in island land area and configuration not only in urban, but also in
rural atolls. The former was found to be either a response to land shortage, as on urban Majuro (Ford, 2012) and South Tarawa
(Duvat et al., 2013), or a prerequisite for the establishment of an airport or of a military base. For example, on South Tarawa,
the infilling of Temaiku Bight undertaken for airstrip construction caused a 363-ha land gain representing 81% of the total
1968–1998 land gain and explaining the profound change in island configuration at the south-eastern angle of the atoll
(Biribo & Woodroffe, 2013). Human intervention also caused marked changes in the configuration of Palmyra during the Sec-
ond World War (Collen et al., 2009). While channel closure isolated some parts of the lagoon, causing changes in sediment
transport between lagoon parts, channel opening strengthened lagoon-to-ocean currents, lowering the level of some parts of
the lagoon. Here, changes also included the formation of new islands due to the deposition of dredged materials on the reef
flat, and a significant increase (+3 m) in artificial island and coast elevation (Collen et al., 2009). Likewise, on Diego Garcia,
dredging and reclamation works associated with the establishment of the military base caused an increase in the atoll's land
area (Hamylton & East, 2012; Purkis et al., 2016). On Huvadhoo, reclamation works undertaken on 12 islands for urban
expansion and harbor construction had the same effect (Aslam & Kench, 2017). Additionally, some studies emphasized that
the connection of islands by causeways, by obstructing ocean-to-lagoon sediment transport, changed island and beach
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configuration and elevation. For example, on Mataiva, causeway construction caused the higher elevation (+0.80 m) of ocean
shores compared to lagoon shores (Duvat, Salvat, et al., 2017). Over the past decades, in urban and rural atolls (e.g., Majuro,
Tarawa, Taku, Tuamotu atolls), sediment mining from reef flats, ocean and lagoon beaches, and ocean-side sand dunes, car-
ried out by both the public authorities and residents to meet construction needs, contributed not only to beach destabilization,
but also to increased wave impact at the coast (Biribo & Woodroffe, 2013; Duvat et al., 2013; Duvat, Salvat, et al., 2017;
Ford, 2012; Mann & Westphal, 2014).

Additionally, most studies highlighted the destabilizing effects of shoreline armoring, transversal structures construction
and coastal developments on the shorelines of populated (e.g., Majuro, South Tarawa, Taku, Rangiroa) and of unsettled mili-
tary (Palmyra and Diego Garcia) atolls. Such human interventions were found to disturb sediment transport and deposition, by
obstructing sediment transport pathways and by causing the contraction of the accommodation space required for sediment
deposition at the coast (Collen et al., 2009; Duvat, 2013; Duvat, Salvat, et al., 2017; Ford, 2012; Mann & Westphal, 2014;
McLean & Kench, 2015; Purkis et al., 2016). In some cases, these human disturbances caused the complete destabilization of
lagoon shorelines, as on Eita sand spit, South Tarawa, and on Tuherahera island, Tikehau (Duvat, 2013; Duvat et al., 2013;
Duvat, Salvat, et al., 2017; Figure 4d). Likewise, on Majuro, Ford (2012) hypothesized that the obstruction of the east-west
oriented longshore sediment drift by coastal developments in the Djarrit-Uliga-Delap urban district probably caused a decrease
in sediment supply to downdrift rural islands.

Lastly, the widespread removal and the clearing of the native vegetation, respectively caused marked changes in island
configuration and shoreline destabilization on some islands, as on Takapoto (Duvat & Pillet, 2017). The degradation of the
coastal vegetation even occurred on islands of unoccupied Diego Garcia (Hamylton & East, 2012; Purkis et al., 2016) and of
rural North Tarawa (Ellison et al., 2017). These findings confirm the widespread contribution of anthropogenic drivers to
island and shoreline change over the past decades to century.

3.3 | Contribution of ecological drivers to regional and subregional variability in atoll and island behavior

The ecological drivers that contribute to island and shoreline change are first, the reef ecosystem, acting as a sediment supplier
and as a wave buffer, and second, the native coastal and intertidal (e.g., mangrove forests) vegetation, acting as a sediment trap
(Beetham et al., 2017; Duvat, Salvat, et al., 2017; Ellison et al., 2017; Ferrario et al., 2014; McLean & Kench, 2015; Perry &
Morgan, 2017).

Island and shoreline change studies have generally interpreted island areal growth as indicating sediment provision to
islands by the reef ecosystem (Duvat, Salvat, et al., 2017; McLean & Kench, 2015). Sediment provision to islands may
result either from the production of fresh sediments (e.g., due to coral breaking by storm waves), or from the reworking
of sediments that had first accumulated on the reef platform. However, due to the absence of data on reef productivity and
net carbonate budgets and on reef-to-island sediment transfer for the atolls considered in this review, the contribution of
these drivers to between- and within-atoll variations in shoreline and island behavior cannot be determined. Studies con-
ducted in some northern and western Tuamotu atolls, however, highlighted the inhibiting role of the steepness of atoll
outer slopes in sediment provision to the ocean shores of islands (Collin, Duvat, Pillet, Salvat, & James, 2018; Duvat,
Salvat, et al., 2017; Harmelin-Vivien & Laboute, 1986). In these atolls, the cross-analysis of coral reef data and of island
and shoreline response to tropical cyclones showed that despite high reef productivity, the accretional impact of such
events was limited by the transfer, and therefore loss, of 75% of broken corals along the outer slopes. The role of atoll
bathymetry in recent shoreline change was confirmed by a study on Takapoto Atoll (northern Tuamotu) that showed a
strong positive correlation between shoreline erosion versus depth and slope averages, indicating that the deeper and
steeper outer slopes are, the more erosional the shoreline was over the past decades (Collin et al., 2018). As variations in
reef health (which drives sediment production) and in atoll bathymetry (which drives sediment transfer to the ocean side
of islands) can be supposed to be high, these two variables likely contribute to explain variations in island and shoreline
change between and within ocean subregions.

Furthermore, as the native intertidal and coastal vegetation contributes to sediment trapping and stabilization, changes in
its nature and extent may have contributed to between- and within-atoll and -island variations in shoreline change over the past
decades. Given that mangroves are only present on certain lagoon shores (e.g., present in Kiribati, but absent in Tuamotu
atolls), their presence or absence may also be a contributory factor for subregional (i.e., between atoll groups) and within-atoll
(i.e., between ocean and lagoon shores) variations in island and shoreline behavior.

Importantly, most studies noted that the major controls exerted by climate-related, anthropogenic and ecological drivers on
island and shoreline change obscured the detection of the sea-level rise signal.
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4 | IMPLICATIONS FOR FUTURE RESEARCH AND ADAPTATION IN CLIMATE CHANGE
POLICIES

4.1 | Research gaps

4.1.1 | Addressing geographical gaps

As available studies only cover 35 atolls out of the 439 atolls listed by Goldberg (2016), further studies are required to provide
a comprehensive overview of atoll status. Geographical gaps need to be addressed for a better appreciation of regional and
subregional variations in atoll island behavior. Future studies should first focus on under-researched regions, that is, the Indian
Ocean (3 documented atolls/41) and Caribbean (no data). Second, in the Pacific where the 32 documented atolls only repre-
sent 8.35% of the 383 atolls counted by Goldberg, future studies should investigate the numerous and still uncovered atolls of
the South China Sea (52 atolls), Indonesia (55 atolls), and Fiji (25 atolls), and provide complementary data on the Papua New
Guinea-Vanuatu region (one documented atoll out of 29), the Caroline Islands group (2/34), and French Polynesia (9/78).

4.1.2 | Standardizing methodological protocols and sharing data

Available studies have employed diverse protocols, as illustrated in particular by the use of five different shoreline proxies to
assess island areal change (Table 1). This has been useful, as it has emphasized the interest of using a multi-indicator approach
to detect not only past-to-present island change (using the vegetation or stability line as a shoreline proxy), but also the pre-
sumed erosive impact of accelerated sea-level rise on islands (which may be detected using the base of the beach as a shoreline
indicator). However, a standardized methodology is now needed to strengthen the comparability of the data generated, and
facilitate the detection of potential regional and subregional variations in atoll, island and shoreline behavior. I therefore rec-
ommend that future studies use two complementary indicators, that is, either the vegetation line or the stability line to capture
multidecadal island change, and the base of the beach to detect the early impact of sea-level rise on islands. Importantly, the
promotion of a standardized methodological protocol also implies that future studies systematically generate the key statistics
that allow documenting atoll island change, that is, changes in island area, and in shoreline and island position. Additionally,
data sharing within the scientific community involved in atoll studies would provide from now on an updated overview on
island change to the advantage of researchers and of atoll countries and territories' decision-makers. The Atoll Island Database
on which this review relies could serve as a starting point in data sharing.

4.1.3 | Moving from the assessment to the attribution of change

Studies have mainly assessed the risk of island disappearance, therefore providing more limited insights on the drivers of
island change. Because most studies were mono-disciplinary (geomorphic), and based on multidate image analysis (without
always including fieldwork), ecological and anthropogenic drivers were rarely considered. This is illustrated by the limited
number of studies providing a place-specific and in-depth analysis of the contributions of the vegetation and reef ecosystem,
and of human activities, to island planform change. The limited accessibility of atolls, high cost of atoll research, and limited
local technical and human capacities, also limits in situ data collection. In this context, promoting interdisciplinary research
involving in particular geomorphology, numerical modeling of hydrodynamic processes, ecology and human geography,
would assist in the attribution of change and in anticipating future changes in the influence and interactions of key drivers.

A better understanding of interactions between the drivers of island change is all the more urgent given that nearshore
hydrodynamic processes are expected to change significantly in the future as a result of accelerated sea-level rise (+1.2 to
+2 m by the end of the 21st century compared to year 2000 levels; Grinsted, Moore, & Jevrejeva, 2010; Kopp et al., 2014)
and increased wave heights (Mentaschi et al., 2017; Shope et al., 2016; Shope et al., 2017). This is especially so if sea-level
rise were to outstrip vertical accretion rates of corals (Harris et al., 2018; Perry et al., 2018), as this would increase water
depth, and thereby wave heights and wave run-up, over reef flats (Quataert, Storlazzi, van Rooijen, Cheriton, & van Donge-
ren, 2015; Storlazzi et al., 2018). Such changes in nearshore hydrodynamic processes, which would be exacerbated by a
decrease in reef hydrodynamic roughness due to coral decline (Quataert et al., 2015), can be predicted to result in changes in
sediment production, transport and deposition, and therefore potentially cause substantial changes to island volume and eleva-
tion (Kench & Mann, 2017; Storlazzi et al., 2018). Sea-level rise may cause the re-opening of the “reef energy window”
(Kench & Brander, 2006), that is, increase wave energy at island shoreline, which would cause important sediment reorganiza-
tion through decreased frictional dissipation and increased wave overtopping, especially during extreme events (Kench &
Mann, 2017; Quataert et al., 2015; Storlazzi et al., 2018). For example, the 2004 Sumatran tsunami and the 2008 distant-
source storm waves, which respectively affected Maalhosmadulu Atoll in the Maldives and Takuu Atoll in Papua New
Guinea, caused washover sedimentation that contributed to vertical island building (Kench, Nichol, Smithers, McLean, &
Brander, 2008; Smithers & Hoeke, 2014).
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4.2 | Implications for risk reduction and adaptation in climate change policies

Tuvalu is the only atoll country for which a complete assessment of areal change has been conducted (in this case showing
land area stability; Kench et al., 2018). Consequently, no final conclusion on change in land area can be drawn for other atoll
countries and territories. However, as none of the 30 study atolls has decreased in area over the past decades to century, we
can hypothesize that these territories have probably also undergone areal stability. This implies that the patterns of population
distribution and of inner (i.e., between-atoll) migration in these territories are not at the point of being affected by climate
change, which supports the conclusions of Connell (2012), who emphasized the predominant controls exerted by extreme nat-
ural events and socioeconomic factors on within-Pacific migrations.

Importantly, the reanalysis of available data on atoll island planform change indicates that over the past decades to century,
no island larger than 10 ha and only 4 out of the 334 islands larger than 5 ha (i.e., 1.2%) underwent a reduction in size. Addi-
tionally, these islands experienced limited changes in land area (from +3% to +10%). From a geomorphic perspective, we can
therefore consider the 10-ha threshold as relevant to define atoll island areal stability. Although this threshold does not con-
sider potential changes in island volume and elevation that would, in the case of a decrease, indicate sediment loss by islands,
it should be considered in island development projects, which still target very small (<5 ha) unstable islands, for example, in
the Maldives (Aslam & Kench, 2017). Furthermore, this threshold could serve for assessing atoll and atoll countries and terri-
tories' vulnerability under climate change. Atolls and atoll countries and territories that are mainly composed of very small
islands (e.g., Huvadhoo, and potentially the Maldives as a whole) are undoubtedly more vulnerable to climate change than the
ones having larger islands (e.g., Mataiva or Takapoto, that is, French Polynesia).

Due to the highly dynamic nature of atoll islands, adequate settlement and development practices that do not disrupt sedi-
ment transport and deposition are required for keeping islands exploitable under sea-level rise over the next decades. In partic-
ular, highly unstable areas (e.g., spits, island tips, along-shoreline areas), should not be settled. Given first, the major and
increasing contribution of anthropogenic activities to island and shoreline change, and second, the destabilizing effects that
they have already had on some islands that have lost the capacity to naturally adjust to climate pressures, limiting human dis-
turbances appears as a priority for adapting to climate change in these territories.

5 | CONCLUSION

This review first confirms that over the past decades to century, atoll islands exhibited no widespread sign of physical destabi-
lization by sea-level rise. The global sample considered in this paper, which includes 30 atolls and 709 islands, reveals that
atolls did not lose land area, and that 73.1% of islands were stable in land area, including most settled islands, while 15.5% of
islands increased and 11.4% decreased in size. Atoll and island areal stability can therefore be considered as a global trend.
Importantly, islands located in ocean regions affected by rapid sea-level rise showed neither contraction nor marked shoreline
retreat, which indicates that they may not be affected yet by the presumably negative, that is, erosive, impact of sea-level rise.

Second, this review reaffirms that atoll island areal change was mainly influenced by island size. While the smallest
islands (<5 ha, 52.90% of islands) exhibited contrasting areal changes (i.e., stability, increase, or decrease in size) and highly
variable values of areal change (from −22.7 to +125.5%), the islands larger than 5 ha (47.10% of islands) generally experi-
enced areal and positional stability. It is noteworthy that no island larger than 10 ha decreased in size, making this value a rele-
vant threshold to define atoll island areal stability. We therefore propose to use this threshold, first, to define the minimum
island size required for human occupancy or exploitation, and second, to assess atoll and atoll countries and territories' vulner-
ability to climate change. Using this threshold for future island development (e.g., resort island) would considerably limit the
risk for new developments to be negatively affected by island areal and positional instability, on condition of also avoiding
any human intervention that may alter island sediment budget (e.g., sediment extraction) and natural dynamics
(e.g., obstruction of sediment transport and deposition by constructions). In addition, the physical instability of small islands
(<10 ha) suggests that atoll countries and territories' vulnerability to sea-level rise is inversely proportional to the size of the
islands composing them. This for example means that the Republic of Maldives (mainly composed of small islands) is, from a
geomorphic perspective, more vulnerable to climate change than the French Tuamotu Archipelago (made up of larger islands).
Assessing atolls' and atoll countries' vulnerability to climate change using this threshold would offer a first comprehensive
overview of atoll status and of atoll countries' needs in terms of adaptation to climate change. Because they are the most vul-
nerable, atolls (at the national scale) and atoll countries (at the global scale) having small islands should be the focus of moni-
toring and assessment activities, and of adaptation efforts.

Third, this paper confirms the highly dynamic nature of some specific atoll island features, such as sand and gravel spits,
island extremities, beaches, hoa shores, and ancient hoa areas, which exhibited marked areal and positional changes over the
past decades. These changes occurred over short (i.e., several years) to multidecadal timescales, depending on the climate
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drivers involved (e.g., short term ENSO-influenced beach changes vs. multidecadal shoreline smoothing and spit extension).
The highly dynamic nature of these features indicates the continuous adjustment of island shores to climatic conditions, which
in turn implies that it is imperative to limit as much as possible human interventions that may destabilize the fragile equilib-
rium of such islands. This once again emphasizes the crucial need for a better consideration of island dynamics in develop-
ment projects.

Fourth, this paper shows that over the past decades, atoll islands exhibited highly contrasting behaviors across ocean
basins and subregions. No distinct regional (i.e., scale of ocean basins or ocean subregions) or subregional (i.e., scale of atoll
groups) profiles emerge from this global review. In some cases, nearby atolls exhibited contrasting behaviors, for example, a
majority of expanding vs. a majority of contracting islands, or opposite behaviors of their leeward and/or windward sides.
Likewise, within a given atoll, nearby islands and island shorelines (either ocean-facing, or lagoon-facing) commonly experi-
enced opposite behaviors. The patterns of atoll island planform change are resolutely atoll- and even in some cases island-spe-
cific. This conclusion suggests that the atoll and island “shadow effects” (Andrefouët et al., 2012), which contribute to the
contrasting responses of nearby atolls and islands to rather similar climatic conditions, play a major role in explaining the con-
trasting behaviors of atolls, atoll sides, islands and island shorelines, within a given atoll group.

Further research should address four priorities: (a) fill geographical gaps by focusing on Indian Ocean, Caribbean and
north-western Pacific atolls; (b) use a common assessment protocol to strengthen data comparability; (c) further investigate
ecological drivers to be able to determine changes in reef productivity; (d) promote interdisciplinary approaches, especially
nearshore processes modeling, to better capture potential changes in drivers' interactions that may alter the fragile equilibrium
of atoll islands.
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